Marie Gollsch
German Aerospace Center, Germany
Title: Materials for thermochemical energy storage: Experimental investigation of cycling stability
Biography
Biography: Marie Gollsch
Abstract
Thermochemical energy storage (TCS) uses the reaction enthalpy of reversible chemical reactions. This storage technology contains a so far largely untouched potential: in comparison to sensible and latent thermal energy storage, TCS offers potentially higher storage densities, the possibility of long-term storage as well as the option to upgrade the thermal energy. This upgrade can be realised if the reaction system consists of a solid and a gaseous component. For these gas-solid reactions with the generic equation
the equilibrium temperature is dependent on the reaction gas partial pressure: the higher the partial pressure, the higher the reaction temperature. Consequently, the charging of the storage can take place at lower temperatures than the discharging by adjustment of the reaction gas partial pressure.
Currently, a number of water vapour-solid reactions are investigated as thermochemical storage materials [1-4]. Apart from a general suitability of a reaction system for thermochemical storage, special attention has to be paid to the cycling stability of the reaction. This is often done using thermogravimetric analysis [5]. However, past scale-ups have shown that behaviour of bulks differs from that of analysis amounts [6]. The bulk’s changing properties, however, have proven to be crucial for storage reactor design. The investigation of the cycling stability and reaction behaviour of reacting solid bulks has been our motivation to design and build a cycling test bench. In this experimental setup the gaseous reaction partner is water vapour and can be provided at pressures between 5 kPa and 0.5 MPa. Reactor temperatures can be up to 500 °C.
The aim of the presented studies is the automated cycling of about 100 ml solid storage material of reaction systems that have previously shown promise at analysis scale.